Elementary Differential Equations – Edwards & Penney – 6th Edition


The Sixth Edition of this acclaimed differential equations book remains the same classic volume it’s always been, but has been polished and sharpened to serve readers even more effectively. Offers precise and clear-cut statements of fundamental existence and uniqueness theorems to allow understanding of their role in this subject.

Features a strong numerical approach that emphasizes that the effective and reliable use of numerical methods often requires preliminary analysis using standard elementary techniques. Inserts new graphics and text where needed for improved accessibility. A useful reference for readers who need to brush up on differential equations.

View more
  • 1. First-Order Differential Equations
    1.1 Differential Equations and Mathematical Models
    1.2 Integrals as General and Particular Solutions
    1.3 Slope Fields and Solution Curves
    1.4 Separable Equations and Applications
    1.5 Linear First-Order Equations
    1.6 Substitution Methods and Exact Equations
    1.7 Population Models
    1.8 Acceleration-Velocity Models

    2. Linear Equations of Higher Order
    2.1 Introduction: Second-Order Linear Equations
    2.2 General Solutions of Linear Equations
    2.3 Homogeneous Equations with Constant Coefficients
    2.4 Mechanical Vibrations
    2.5 Nonhomogeneous Equations and Undetermined Coefficients
    2.6 Forced Oscillations and Resonance
    2.7 Electrical Circuits
    2.8 Endpoint Problems and Eigenvalues

    3. Power Series Methods
    3.1 Introduction and Review of Power Series
    3.2 Series Solutions Near Ordinary Points
    3.3 Regular Singular Points
    3.4 Method of Frobenius: The Exceptional Cases
    3.5 Bessel's Equation
    3.6 Applications of Bessel Functions

    4. Laplace Transform Methods
    4.1 Laplace Transforms and Inverse Transforms
    4.2 Transformation of Initial Value Problems
    4.3 Translation and Partial Fractions
    4.4 Derivatives, Integrals, and Products of Transforms
    4.5 Periodic and Piecewise Continuous Input Functions
    4.6 Impulses and Delta Functions

    5. Linear Systems of Differential Equations
    5.1 First-Order Systems and Applications
    5.2 The Method of Elimination
    5.3 Matrices and Linear Systems
    5.4 The Eigenvalue Method for Homogeneous Systems
    5.5 Second-Order Systems and Mechanical Applications
    5.6 Multiple Eigenvalue Solutions
    5.7 Matrix Exponentials and Linear Systems
    5.8 Nonhomogeneous Linear Systems

    6. Numerical Methods
    6.1 Numerical Approximation: Euler's Method
    6.2 A Closer Look at the Euler Method
    6.3 The Runge-Kutta Method
    6.4 Numerical Methods for Systems

    7. Nonlinear Systems and Phenomena
    7.1 Equilibrium Solutions and Stability
    7.2 Stability and the Phase Plane
    7.3 Linear and Almost Linear Systems
    7.4 Ecological Models: Predators and Competitors
    7.5 Nonlinear Mechanical Systems
    7.6 Chaos in Dynamical Systems

    8. Fourier Series Methods
    8.1 Periodic Functions and Trigonometric Series
    8.2 General Fourier Series and Convergence
    8.3 Fourier Sine and Cosine Series
    8.4 Applications of Fourier Series
    8.5 Heat Conduction and Separation of Variables
    8.6 Vibrating Strings and the One-Dimensional Wave Equation
    8.7 Steady-State Temperature and Laplace's Equation

    9. Eigenvalues and Boundary Value Problems
    9.1 Sturm-Liouville Problems and Eigenfunction Expansions
    9.2 Applications of Eigenfunction Series
    9.3 Steady Periodic Solutions and Natural Frequencies
    9.4 Cylindrical Coordinate Problems
    9.5 Higher-Dimensional Phenomena
  • Citation
    • Full Title: Elementary Differential Equations
    • Author/s:
    • ISBN-10: 0132397307
    • ISBN-13: 9780132397308
    • Edition: 6th Edition
    • Publication date: 2007
    • Topic: Math
    • Subtopic: Differential Equations
    • File Type: eBook | Solution Manual

Leave us a comment

No Comments

Notify of
Inline Feedbacks
View all comments
Would love your thoughts, please comment.x