## Description

This text presents a comprehensive treatment of signal processing and linear systems suitable for juniors and seniors in electrical engineering. Based on B. P. Lathi’s widely used book, Linear Systems and Signals, it features additional applications to communications, controls, and filtering as well as new chapters on analog and digital filters and digital signal processing.

Lathi emphasizes the physical appreciation of concepts rather than the mere mathematical manipulation of symbols. Avoiding the tendency to treat engineering as a branch of applied mathematics, he uses mathematics to enhance physical and intuitive understanding of concepts, instead of employing it only to prove axiomatic theory. Theoretical results are supported by carefully chosen examples and analogies, allowing students to intuitively discover meaning for themselves.

View more
• Background
B.1: Complex Numbers
B.2: Sinusoids
B.3: Sketching Signals
B.4: Cramer's Rule
B.5: Partial Fraction Expansion
B.6: Vectors and Matrices
B.7: Miscellaneous

Chapter 1. Introduction to Signals and Systems
1.1: Size of a Signal
1.2: Classification of Signals
1.3: Some Useful Signal Operations
1.4: Some Useful Signal Models
1.5: Even and Odd Functions
1.6: Systems
1.7: Classification of Systems
1.8: System Model: Input-Output Description

Chapter 2. Time-Domain Analysis of Continuous-Time Systems
2.1: Introduction
2.2: System Response to Internal Conditions: Zero-Input Response
2.3: The Unit Impulse Response h(t)
2.4: System Response to External Input: Zero-State Response
2.5: Classical Solution of Differential Equations
2.6: System Stability
2.7: Intuitive Insights into System Behavior
2.8: Appendix 2.1: Determining the Impulse Response

Chapter 3. Signal Representation by Fourier Series
3.1: Signals and Vectors
3.2: Signal Comparison: Correlation
3.3: Signal Representation by Orthogonal Signal Set
3.4: Trigonometric Fourier Series
3.5: Exponential Fourier Series
3.6: Numerical Computation of D[n
3.7: LTIC System response to Periodic Inputs
3.8: Appendix

Chapter 4. Continuous-Time Signal Analysis: The Fourier Transform
4.1: Aperiodic Signal Representation by Fourier Integral
4.2: Transform of Some Useful Functions
4.3: Some Properties of the Fourier Transform
4.4: Signal Transmission through LTIC Systems
4.5: Ideal and Practical Filters
4.6: Signal Energy
4.7: Application to Communications: Amplitude Modulation
4.8: Angle Modulation
4.9: Data Truncation: Window Functions

Chapter 5. Sampling
5.1: The Sampling Theorem
5.2: Numerical Computation of Fourier Transform: The Discrete Fourier Transform (DFT)
5.3: The Fast Fourier Transform (FFT)
5.4: Appendix 5.1

Chapter 6. Continuous-Time System Analysis Using the Laplace Transform
6.1: The Laplace Transform
6.2: Some Properties of the Laplace Transform
6.3: Solution of Differential and Integro-Differential Equations
6.4: Analysis of Electrical Networks: The Transformed Network
6.5: Block Diagrams
6.6: System Realization
6.7: Application to Feedback and Controls
6.8: The Bilateral Laplace Transform
6.9: Appendix 6.1: Second Canonical Realization

Chapter 7. Frequency Response and Analog Filters
7.1: Frequency Response of an LTIC System
7.2: Bode Plots
7.3: Control System Design Using Frequency Response
7.4: Filter Design by Placement of Poles and Zeros of H(s)
7.5: Butterworth Filters
7.6: Chebyshev Filters
7.7: Frequency Transformations
7.8: Filters to Satisfy Distortionless Transmission Conditions

Chapter 8. Discrete-Time Signals and Systems
8.1: Introduction
8.2: Some Useful Discrete-Time Signal Models
8.3: Sampling Continuous-Time Sinusoids and Aliasing
8.4: Useful Signal Operations
8.5: Examples of Discrete-Time Systems

Chapter 9. Time-Domain Analysis of Discrete-Time Systems
9.1: Discrete-Time System Equations
9.2: System Response to Internal Conditions: Zero-Input Response
9.3: Unit Impulse Response h[k]
9.4: System Response to External Input: Zero-State Response
9.5: Classical Solution of Linear Difference Equations
9.6: System Stability
9.7: Appendix 9.1: Determining Impulse Response

Chapter 10. Fourier Analysis of Discrete-Time Signals
10.1: Periodic Signal Representation by Discrete-Time Fourier Series
10.2 Aperiodic Signal Representation by Fourier Integral
10.3: Properties of DTFT
10.4: DTFT Connection with the Continuous-Time Fourier Transform
10.5: Discrete-Time Linear System Analysis by DTFT
10.6: Signal Processing Using DFT and FFT
10.7: Generalization of DTFT to the Z-Transform

Chapter 11. Discrete-Time System Analysis Using the Z-Transform
11.1: The Z-Transform
11.2: Some Properties of the Z-Transform
11.3: Z-Transform Solution of Linear Difference Equations
11.4: System Realization
11.5: Connection Between the Laplace and the Z-Transform
11.6: Sampled-Data (Hybrid) Systems
11.7: The Bilateral Z-Transform

Chapter 12. Frequency Response and Digital Filters
12.1: Frequency Response of Discrete-Time Systems
12.2: Frequency Response From Pole-Zero Location
12.3: Digital Filters
12.4: Filter Design Criteria
12.5: Recursive Filter Design: The Impulse Invariance Method
12.6: Recursive Filter Design: The Bilinear Transformation Method
12.7: Nonrecursive Filters
12.8: Nonrecursive Filter Design

Chapter 13. State-Space Analysis
13.1: Introduction
13.2: Systematic Procedure for Determining State Equations
13.3: Solution of State Equations
13.4: Linear Transformation of State Vector
13.5: Controllability and Observability
13.6: State-Space Analysis of Discrete-Time Systems

Index
Each chapter ends with a Summary
• Citation
• Full Title: Signal Processing and Linear Systems
• Author/s:
• ISBN-10: 0195219171
• ISBN-13: 9780195219173
• Edition: 1st Edition
• Publication date: 2003
• Topic: Electrical
• Subtopic: Digital Signal Processing
• File Type: eBook
• Idioma: English

Subscribe
Notify of