Multivariable Calculus – Jon Rogawski – 2nd Edition

Description

Rogawski engages students while reinforcing the relevance of calculus to their lives and future studies. Precise mathematics, vivid examples, colorful graphics, intuitive explanations, and extraordinary problem sets all work together to help students grasp a deeper understanding of calculus.

Now Rogawski’s Calculus success continues in a meticulously updated new edition. Revised in response to user feedback and classroom experiences, the new edition provides an even smoother teaching and learning experience.

View more
  • Chapter 12: Vector Geometry
    12.1 Vectors in the Plane
    12.2 Vectors in Three Dimensions
    12.3 Dot Product and the Angle Between Two Vectors
    12.4 The Cross Product
    12.5 Planes in Three-Space
    12.6 A Survey of Quadric Surfaces
    12.7 Cylindrical and Spherical Coordinates

    Chapter 13: Calculus of Vector-Valued Functions
    13.1 Vector-Valued Functions
    13.2 Calculus of Vector-Valued Functions
    13.3 Arc Length and Speed
    13.4 Curvature
    13.5 Motion in Three-Space
    13.6 Planetary Motion According to Kepler and Newton

    Chapter 14: Differentiation in Several Variables
    14.1 Functions of Two or More Variables
    14.2 Limits and Continuity in Several Variables
    14.3 Partial Derivatives
    14.4 Differentiability and Tangent Planes
    14.5 The Gradient and Directional Derivatives
    14.6 The Chain Rule
    14.7 Optimization in Several Variables
    14.8 Lagrange Multipliers: Optimizing with a Constraint

    Chapter 15: Multiple Integration
    15.1 Integration in Variables
    15.2 Double Integrals over More General Regions
    15.3 Triple Integrals
    15.4 Integration in Polar, Cylindrical, and Spherical Coordinates
    15.5 Applications of Multiplying Integrals
    15.6 Change of Variables

    Chapter 16: Line and Surface Integrals
    16.1 Vector Fields
    16.2 Line Integrals
    16.3 Conservative Vector Fields
    16.4 Parametrized Surfaces and Surface Integrals
    16.5 Surface Integrals of Vector Fields

    Chapter 17: Fundamental Theorems of Vector Analysis
    17.1 Green’s Theorem
    17.2 Stokes’ Theorem
    17.3 Divergence Theorem
  • Citation
    • Full Title: Multivariable Calculus
    • Author/s:
    • ISBN-10: 1429231874
    • ISBN-13: 9781429231879
    • Edition: 2nd Edition
    • Topic: Calculus
    • Subtopic: Multivariable Calculus
    • Volumen: Volumen 2
    • File Type: eBook
    • Idioma: English

Leave us a comment

No Comments

Subscribe
Notify of
0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x